2023考研数学:高数知识点汇总(6~8章) -ag九游会app

2023考研数学:高数知识点汇总(6~8章) _考研要辅导班

2023考研数学:高数知识点汇总(6~8章)

  【摘要】在暑期完成第一轮基础考点的复习之后,9月份开始需要对考研数学所考的定理定义进行必要的汇总。今天与大家分享第6~8章的内容。

  
 

  
  ▶第六章 定积分的应用
  求平面图形的面积(曲线围成的面积)
  直角坐标系下(含参数与不含参数)
  极坐标系下(r,θ,x=rcosθ,y=rsinθ)(扇形面积公式s=r2θ/2)
  旋转体体积(由连续曲线、直线及坐标轴所围成的面积绕坐标轴旋转而成)(且体积v=∫abπ[f(x)]2dx,其中f(x)指曲线的方程)
  平行截面面积为已知的立体体积(v=∫aba(x)dx,其中a(x)为截面面积)
  功、水压力、引力
  函数的平均值(平均值y=1/(b-a)*∫abf(x)dx)

  ▶第七章 多元函数微分法及其应用
  1、多元函数极限存在的条件极限存在是指p(x,y)以任何方式趋于p0(x0,y0)时,函数都无限接近于a,如果p(x,y)以某一特殊方式,例如沿着一条定直线或定曲线趋于p0(x0,y0)时,即使函数无限接近某一确定值,我们还不能由此断定函数极限存在。反过来,如果当p(x,y)以不同方式趋于p0(x0,y0)时,函数趋于不同的值,那么就可以断定这函数的极限不存在。例如函数:f(x,y)={0(xy)/(x^2 y^2)x^2 y^2≠0

  2、多元函数的连续性定义设函数f(x,y)在开区域(或闭区域)d内有定义,p0(x0,y0)是d的内点或边界点且p0∈d,如果lim(x→x0,y→y0)f(x,y)=f(x0,y0)则称f(x,y)在点p0(x0,y0)连续。
  性质(最大值和最小值定理)在有界闭区域d上的多元连续函数,在d上一定有最大值和最小值。
  性质(介值定理)在有界闭区域d上的多元连续函数,如果在d上取得两个不同的函数值,则它在d上取得介于这两个值之间的任何值至少一次。

  3、多元函数的连续与可导如果一元函数在某点具有导数,则它在该点必定连续,但对于多元函数来说,即使各偏导数在某点都存在,也不能保证函数在该点连续。这是因为各偏导数存在只能保证点p沿着平行于坐标轴的方向趋于p0时,函数值f(p)趋于f(p0),但不能保证点p按任何方式趋于p0时,函数值f(p)都趋于f(p0)。

  4、多元函数可微的必要条件一元函数在某点的导数存在是微分存在的充分必要条件,但多元函数各偏导数存在只是全微分存在的必要条件而不是充分条件,即可微=>可偏导。

  5、多元函数可微的充分条件定理(充分条件)如果函数z=f(x,y)的偏导数存在且在点(x,y)连续,则函数在该点可微分。

  6.多元函数极值存在的必要、充分条件定理(必要条件)设函数z=f(x,y)在点(x0,y0)具有偏导数,且在点(x0,y0)处有极值,则它在该点的偏导数必为零。
  定理(充分条件)设函数z=f(x,y)在点(x0,y0)的某邻域内连续且有一阶及二阶连续偏导数,又fx(x0,y0)=0,fy(x0,y0)=0,令fxx(x0,y0)=0=a,fxy(x0,y0)=b,fyy(x0,y0)=c,则f(x,y)在点(x0,y0)处是否取得极值的条件如下:(1)ac-b2>0时具有极值,且当a<0时有极大值,当a>0时有极小值;(2)ac-b2<0时没有极值;(3)ac-b2=0时可能有也可能没有。

  7、多元函数极值存在的解法(1)解方程组fx(x,y)=0,fy(x,y)=0求的一切实数解,即可求得一切驻点。
  (2)对于每一个驻点(x0,y0),求出二阶偏导数的值a、b、c.(3)定出ac-b2的符号,按充分条件进行判定f(x0,y0)是否是极大值、极小值。
  注意:在考虑函数的极值问题时,除了考虑函数的驻点外,如果有偏导数不存在的点,那么对这些点也应当考虑在内。

  ▶第八章 二重积分
  1、二重积分的一些应用曲顶柱体的体积曲面的面积(a=∫∫√[1 f2x(x,y) f2y(x,y)]dσ)
  平面薄片的质量平面薄片的重心坐标(x=1/a∫∫xdσ,y=1/a∫∫ydσ;其中a=∫∫dσ为闭区域d的面积。
  平面薄片的转动惯量(ix=∫∫y2ρ(x,y)dσ,iy=∫∫x2ρ(x,y)dσ;其中ρ(x,y)为在点(x,y)处的密度。
  平面薄片对质点的引力(fxfyfz)

  2、二重积分存在的条件当f(x,y)在闭区域d上连续时,极限存在,故函数f(x,y)在d上的二重积分必定存在。

  3、二重积分的一些重要性质性质如果在d上,f(x,y)≤ψ(x,y),则有不等式∫∫f(x,y)dxdy≤∫∫ψ(x,y)dxdy,特殊地由于-|f(x,y)|≤f(x,y)≤|f(x,y)|又有不等式|∫∫f(x,y)dxdy|≤∫∫|f(x,y)|dxdy.性质设m,m分别是f(x,y)在闭区域d上的最大值和最小值,σ是d的面积,则有mσ≤∫∫f(x,y)dσ≤mσ。

  性质(二重积分的中值定理)设函数f(x,y)在闭区域d上连续,σ是d的面积,则在d上至少存在一点(ξ,η)使得下式成立:∫∫f(x,y)dσ=f(ξ,η)*σ4、二重积分中标量在直角与极坐标系中的转换把二重积分从直角坐标系换为极坐标系,只要把被积函数中的x,y分别换成ycosθ、rsinθ,并把直角坐标系中的面积元素dxd。

  (实习编辑:孙慧敏)

2023考研数学:高数知识点汇总(6~8章)

2023考研数学:高数知识点汇总(6~8章) _考研要辅导班

类似文章